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McEliece cryptosystem

Public key : Gpyp = SGoP
Secret key : Gg, S, P

Encryption : ¢ = mGp,p + €

Attack either on the ciphertext (decoding problem) or the public
key (code identification problem)



History

Algebraic geometry codes are fast, with good correction capabi-
lity. Why not use them for McEliece cryptosystem 7

Genus O : Generalized Reed-Solomon codes, broken by Sidelnikov
and Shestakov in 1992.

Genus 1 : Elliptic codes, broken by Minder and Shokrollahi in
2007.

Genus 2 : Hyperelliptic codes, proposed by Janwa and Moreno
in 1996, unattacked until today.



Outline of the talk

Mathematical definitions

Presentation of our algorithm



Algebraic geometry

Let X be a hyperelliptic curve of genus g = 2 over A,(F,), defined
by the equation :

v2 + G(z)y = F(x), with deg(F) =2g+ 1, and deg(G) < g.

A divisor A over X is a formal finite sum of points of X

A=Y np(P), deg(A)= Y np, npeZ
PeX PeX



Jacobian group

Any rational function f over X has an associated divisor div(f) :

div(f) = 3 ordp(f)(P).

PeX

deg(div(f)) =0

Jac(X) = Divisors of degree 0/divisors of rational functions

JaC(X):gzﬂx---x

Cwith dql...|d>,, d —1
07 dngZ 1]...|d2g, dilq



Geometric codes

Let A be a divisor of degree K+ 1 > 2 over X.

L(A) = {f € Fg(X)|div(f) + A >0} U {0}
IS a vector space of dimension k.

AGC(X, A, (Pr, ..., Pn)) ={(f(P1),..., f(Pu))|f € L(A)}

If (Py,...,P,) are distinct, this is a linear code of length n, di-
mension k, and minimal distanced >n —k — 1.

For c; € ]FZ;, AGC(X,A,(Pl,...,Pn),(Cl,

...,cp)) is a directional
scaling of the former code.



Our goal

Given C = AGC(X',A',(P{,...,P})), where X' A’ (P{,...,P))
are unknown,

we recover in polynomial (quartic) time X, A, (Py,..., Py),(c1,...,¢cn)
such that

C = AGC(.)C', A, (Pl, .. .,Pn), (Cl, .. .,Cn))



Assumptions

n ~ Fq(X)

gcd(k+1,|G)) =1, so A = (k+ 1)Ag.

Codewords of weight n — kK — 1 are easy to generate.
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Outline of the attack

Recovering the Jacobian group structure
Recovering the curve equation
Recovering the coordinates of the evaluation points

Computing the scaling coefficients
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Recovering the Jacobian structure

7

©
g

zi=¢((F) — Do) €9

Let x € C be a codeword of weight n — k — 1, with zero postions
on i1, ... 7ik+1- Then

k+g—1
Z Fij = 0
j=0

11



Recovering the Jacobian structure

With slightly more than n equations, we recover the d; and the
Z; in O(n%).

A statistical test on opposite points allow us to recover the value
of g = p(Ag — (O)) in O(n?) operations.
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Recovering the curve equation

We generate (in O(n3)) v,w € C of weight (n — k — 1), with
exactly k — 1 zero position in common, and the remaining zeros
on a pair of opposite points.

ﬁ:ﬁ Pi):a,xz-—l—b
w;  f2 cr; +d

where a,b,c,d € Fq; are unknown constants, and z; is the X-
coordinate of P,.
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Recovering the curve equation

& — é P’L) — a:ry —I_
w;  f2 cr; + d

We guess the coordinates of 3 points Py, , Pk, Pg,-

We recover the constants a,b, ¢, d.

We recover the X-coordinates of many P;. (We use colinearity
equations for Y-coordinates)

We need O(n) guesses to recover the curve equation.
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ecovering all the evaluation points
We know all the z; = p((P;)) — Ag) € G

We know the curve equation, and the coordinates (x;,y;) of a
quite large number of P;.

The coordinates of the remaining P; are computed by decompo-
sition in G and point arithmetics over the curve, in O(nlogn).
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cecovering the distortion coefficients

C:AGC(X,A,(P]_,...,Pn),(C]_,...,Cn))

c1,...,cn € Fq are the only unknowns, we compute them in O(n3)
by a simple matrix inversion.
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Conclusions

Under reasonable assumptions, our attack breaks McEliece cryp-
tosystem over hyperelliptic codes of genus 2, in time O(n%).

Over superior genus, this attack could work, with very low but
non-zero probability.
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