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MEliee ryptosystem

Publi key : Gpub = SG0PSeret key : G0, S, P

Enryption : c = mGpub + e

Attak either on the iphertext (deoding problem) or the publikey (ode identi�ation problem)
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History

Algebrai geometry odes are fast, with good orretion apabi-lity. Why not use them for MEliee ryptosystem?

Genus 0 : Generalized Reed-Solomon odes, broken by Sidelnikovand Shestakov in 1992.

Genus 1 : Ellipti odes, broken by Minder and Shokrollahi in2007.
Genus 2 : Hyperellipti odes, proposed by Janwa and Morenoin 1996, unattaked until today. 3



Outline of the talk

Mathematial de�nitions

Presentation of our algorithm
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Algebrai geometry

Let X be a hyperellipti urve of genus g = 2 over A2(Fq), de�nedby the equation :
y2 + G(x)y = F(x), with deg(F) = 2g + 1, and deg(G) ≤ g.

A divisor ∆ over X is a formal �nite sum of points of X

∆ =
∑

P∈X

nP 〈P 〉, deg(∆) =
∑

P∈X

nP , nP ∈ Z.
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Jaobian groupAny rational funtion f over X has an assoiated divisor div(f) :div(f) =
∑

P∈X

ordP (f)〈P 〉.

deg(div(f)) = 0

Jac(X) = Divisors of degree 0/divisors of rational funtions
Jac(X) ≃ G =

Z

d1Z
× · · · ×

Z

d2gZ

, with d1| . . . |d2g, d1|q − 16



Geometri odesLet ∆ be a divisor of degree k + 1 ≥ 2 over X .

L(∆) = {f ∈ Fq(X)|div(f) + ∆ ≥ 0} ∪ {0}is a vetor spae of dimension k.
AGC(X ,∆, (P1, . . . , Pn)) = {(f(P1), . . . , f(Pn))|f ∈ L(∆)}

If (P1, . . . , Pn) are distint, this is a linear ode of length n, di-mension k, and minimal distane d ≥ n − k − 1.For ci ∈ F∗
q, AGC(X ,∆, (P1, . . . , Pn), (c1, . . . , cn)) is a diretionalsaling of the former ode. 7



Our goal

Given C = AGC(X ′,∆′, (P ′
1, . . . , P ′

n)), where X ′,∆′, (P ′
1, . . . , P ′

n)are unknown,
we reover in polynomial (quarti) time X ,∆, (P1, . . . , Pn), (c1, . . . , cn)suh that

C = AGC(X ,∆, (P1, . . . , Pn), (c1, . . . , cn))
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Assumptions

n ≈ Fq(X)

gcd(k + 1, |G|) = 1, so ∆ = (k + 1)∆0.

Codewords of weight n − k − 1 are easy to generate. 9



Outline of the attak

Reovering the Jaobian group struture

Reovering the urve equation

Reovering the oordinates of the evaluation points

Computing the saling oe�ients 10



Reovering the Jaobian struture

Ja(X)
ϕ
≃ G =

Z

d1Z
× · · · ×

Z

d2gZ

z̃i = ϕ(〈Pi〉 − ∆0) ∈ G

Let x ∈ C be a odeword of weight n − k − 1, with zero postionson i1, . . . , ik+1. Then

k+g−1∑

j=0

z̃ij = 0

11



Reovering the Jaobian struture

With slightly more than n equations, we reover the di and the

z̃i in O(n4).
A statistial test on opposite points allow us to reover the valueof δ0 = ϕ(∆0 − 〈O〉) in O(n2) operations.
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Reovering the urve equation

We generate (in O(n3)) v,w ∈ C of weight (n − k − 1), withexatly k − 1 zero position in ommon, and the remaining zeroson a pair of opposite points.
vi

wi
=

f1
f2

(Pi) =
axi + b

cxi + d

where a, b, c, d ∈ Fq are unknown onstants, and xi is the X-oordinate of Pi. 13



Reovering the urve equation

vi

wi
=

f1
f2

(Pi) =
axi + b

cxi + d

We guess the oordinates of 3 points Pk1
, Pk2

, Pk3

.We reover the onstants a, b, c, d.We reover the X-oordinates of many Pi. (We use olinearityequations for Y-oordinates)

We need O(n) guesses to reover the urve equation. 14



Reovering all the evaluation points

We know all the z̃i = ϕ(〈Pi〉 − ∆0) ∈ G

We know the urve equation, and the oordinates (xi, yi) of aquite large number of Pi.

The oordinates of the remaining Pi are omputed by deompo-sition in G and point arithmetis over the urve, in O(n logn).
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Reovering the distortion oe�ients

C = AGC(X ,∆, (P1, . . . , Pn), (c1, . . . , cn))

c1, . . . , cn ∈ Fq are the only unknowns, we ompute them in O(n3)by a simple matrix inversion.
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Conlusions

Under reasonable assumptions, our attak breaks MEliee ryp-tosystem over hyperellipti odes of genus 2, in time O(n4).

Over superior genus, this attak ould work, with very low butnon-zero probability.
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